ECOLOGY OF SEPIA OFFICINALIS

A. GUERRA

ECOBIOMAR, Instituto de Investigaciones Marinas (CSIC), Eduardo Cabello 6, 36208 Vigo. Spain Corresponding author: angelguerra@iim.csic.es

CUTTLEFISH SEPIA OFFICINALIS CEPHALOPODA ECOLOGY ABSTRACT. – This article comprises an up-dated review of the processes influencing the distribution and abundance of the common cuttlefish *Sepia officinalis*, the interactions between the species and the main variables of the environment in which it lives and its trophic, demographic and behavioural ecology.

The geographical distribution of the common cuttlefish, *Sepia officinalis* L., 1758 covers the Mediterranean Sea and the waters of the Eastern Atlantic from southern Norway and northern England to the northwestern coast of Africa. The species also lives in Madeira and in the Canary Islands (Khromov *et al.* 1998). The geographical distribution of *S. officinalis* and *Sepia hierredda* Rang, 1837 in the eastern Central Atlantic shows that these species are sympatric. The southern boundary of *S. officinalis* coincides approximately with the border between Mauritania and Senegal (16°N) and the northern limit of *S. hierredda* is at Cape Blanc (21°N) (Guerra *et al.* 2001).

Factors influencing the distribution and abundance of Sepia officinalis

S. officinalis is a nekto-benthic species occurring predominantly on sandy and muddy bottoms from the coastline (2-3 m depth) to approximately 200 m depth, with the greatest abundance in the upper 100 m. Life in inshore waters exposes this species to hydrologically unstable conditions, and because of this S. officinalis is relatively tolerant to variations in salinity. Animals have been observed in coastal lagoons at a salinity of 27 PSU in the Mediterranean (Mangold-Wirz 1963). Observations from the Western Mediterranean and the NW Atlantic have shown that juveniles and adults can survive for some time at salinities 18±2 PSU if slowly acclimatized (Boletzky 1983, Guerra & Castro 1988). In culture tanks both embryonic development and growth of young cuttlefish usually occurs between 37±3 PSU (Domingues et al. 2001). However, Paulij et al. (1990) observed that some embryos of S. officinalis from eggs collected in the SW Netherlands hatched at a salinity of 26.5 PSU, but no hatching occurred below 23.9 PSU, and below 22.4 PSU embryos with morphological malformations were found.

Experiments with S. officinalis showed that shells of large animals implode between 150 and

200 m, whereas advanced embryonic specimens and newly hatched animals implode between 50 and 100 m. The larger individuals are occasionally caught at depths greater than the implosion depth of the juvenile shell parts. They apparently avoid implosion of the early shell portions by refilling these first-formed chambers with cameral liquid later in life (Ward & Boletzky 1984).

The temperature limits of the species range from 10°C to 30°C. At temperatures below 10°C the individuals do not feed, stay inactive and die in a couple of days (Richard 1971, Bettencourt 2000). Hatchlings and young S. officinalis were successfully cultured in tanks with an open sea water system in which temperature reached 30°C (Domingues et al. 2001), and indeed the species lives in the lagoon system of the Ria Formosa (South Portugal), where temperature reaches 27±3°C in summer (Domingues et al. 2002). Oxygen affinity expressed by P_{50} (partial pressure of gas at which the blood remains 50% saturated) as a function of temperature for S. officinalis showed that it increased from 12 mm Hg at 5°C to near 38 at 17°C, the slope of the linear regression being relatively low. This is an indication that the species does not have the ability to accommodate large or small temperature ranges in its natural habitat (Brix et al. 1994). Recent findings by Melzner et al. (2004) supported the hypothesis of an oxygen limitation due to thermal tolerance (upper limit at about 26° C) caused by limited capacity and a loss in coordination of the components of the oxygen delivery system.

Johansen *et al.* (1982) studied the O_2 uptake in relation to body weight and concluded that the common cuttlefish is not very tolerant to low oxygen concentrations. Low oxygen concentrations can account for the absence or low abundance of *S. officinalis.* Thus, a comparison between the cuttlefish fisheries in the upwelling areas off the NW African coast and the Northern Benguela current undertaken by Guerra & Sánchez (1985) suggested continuous euthrophic scenarios in shallow waters in the cores of the southern upwelling (25-28°S).

This is where low oxygen concentrations are common, and they appear to be the most important limiting factor for the development of cuttlefish populations.

The physiological processes for buoyancy in the cuttlebone of *S. officinalis* determine their role as major bioenergetic consumers. As indicated by Webber *et al.* (2000), buoyancy and activity of *S. officinalis* are typically higher at night (VO₂ from 93 to 120 mg O₂ kg⁻¹ h⁻¹) than during the day (VO₂ between 77 and 93). Within the depth limits imposed by shell implosion, the cuttlefish is less energetically expensive with depth than any fish. Thus, it can competitively occupy top niches in the trophic web of shallow waters that involve daily vertical migrations.

Landing per unit effort of cuttlefish from a time series of 18 years in SW Spain indicated that the abundance of this species did not show a correlation with rainfall rates, river discharges and sea surface temperature (Sobrino et al. 2002). This reinforces the view that the common cuttlefish exhibit high physiological flexibility, which allows a great ability to endure changing environments, not only during its adult phase but also at early juvenile stages (Sobrino et al. 2002). Jorge and Sobral (2004) indicated that strong precipitation had a negative influence on the cuttlefish abundance in the Ría de Aveiro (Central Portugal) and that, on the contrary, the cumulative effect of high values of solar radiation, temperature of the air, water transparency and salinity near the bottom seemed to positively influence the catches of this species.

Toxic effects of heavy metals can negatively influence the distribution and abundance of S. officinalis. As the species is a primary food source for many predators and also for human consumption, it is a potential threat for higher trophic levels (Bustamante et al. 2002). Concentration and distribution of heavy metals in tissues of S. officinalis have observed high and selective bioaccumulation (Miramand & Bentley 1992). Ecotoxicological studies using bioassays from isolated digestive gland cells demonstrated that some heavy metals (Cu, Zn and Ag) induced high disturbance of enzymatic systems (Le Bihan et al. 2004). The impact of these metals on survival and growth of eggs and juvenile cuttlefish can be very negative (Koueta pers comm). Culture experiments at different stages of the life cycle of S. officinalis using Zn and Cd tracers with sea water, sediments and food as uptake pathways showed that food is the likely primary track for bioaccumulation, and that the digestive gland plays a major role in the subsequent storage and presumed detoxification of these elements regardless of the uptake pathway (Bustamante et al. 2002). Malformed common cuttlefish caught in the Bay of Arcachon could be a product of the teratogenic effects of the antifouling compound TBT (Schipp & Boletzky 1998).

S. officinalis does not form shoals neither in the wild nor in the laboratory, but in culture they tolerate one another except under extreme food deprivation. This tolerance is higher in young animals than in subadult and adult ones (Hanlon & Messenger 1996). A feeding hierarchy first appearing after 4 months, which stabilizes after 5 months, has been found in this species (Warnke 1994). Captive-rearing experiments indicated that behaviour of S. officinalis was strongly affected by housing conditions and suggested that this species is probably semi-solitary under natural conditions (Boal et al. 1999). The results obtained when studying the effects of crowding in cuttlefish cultured at different densities are somewhat contradictory. This could be due to the difficulty of comparing experiments undertaken under different conditions. Experiments completed by Domingues et al. (2003) showed that cuttlefish cultured in isolation had higher growth and survival rates that the ones maintained at relatively high densities, even when stressed. The authors observed agonistic behaviour related with competition for space with higher densities in thanks, indicating that density, or lack of space, appear to be more limiting than isolation.

To date, very few interspecific associations (excluding parasitism) have been reported for this species. Bacterial populations associated with S. officinalis have been localized mainly in the accessory nidamental glands, the renal appendages and the shell epithelium. The accessory nidamental glands show an intense orange-red coloration in mature females, and this colour is due to carotenoid pigments, which occur in symbiotic bacteria (Van Den Braden et al. 1980). Five symbiotic bacterial taxa (Agrobacterium, Roseobacter, Rhodobium-Xanthobacter, Sporochtya and Clostridium) were identified in the tubules of the accessory nidamental glands, and three taxa of Pseudomonacae were located in the renal appendages and the shell epithelium. All these bacteria, except Gram-positive ones, were also present in embryos, suggesting vertical transmission, i.e. maternal transmission at egg stage (Grigioni & Boucher-Rodoni 2002).

The copepod *Metaxymolgus longicaudata* has also been found to be associated with this cuttlefish, but its role was not elucidated (Ho 1983). Small specimens (mantle length, ML<65 mm) of *S. officinalis* and adult *S. elegans* (ML 45-65 mm) exhibited diets with similar prey types, although in different proportions. This may suggest a trophic competition between the two species at that size range (Castro & Guerra 1990).

Apparent replacement of finfish by *Octopus* vulgaris and *S. officinalis* in the Sahara Bank $(21^{\circ}N-26^{\circ}N)$ since the 1960s was attributed to a change in the ecosystem due to overexploitation of finfish. Balguerias *et al.* (2000) re-evaluated the history of these fisheries and suggested that the changes in the faunistic composition of the com-

munities were caused by a combination of factors, including economic initiatives as well as oceanographic variations and competition for food. This ultimately favoured benthic cephalopod populations at the cost of most finfish populations.

The present-day geographical distribution pattern of the Sepiidae may have been generated by a complex mosaic of factors involving palaeo-oceanographical changes (Neige 2003). Some attempts were made to clarify the taxonomic status of the genus Sepia L., 1758, which comprises approximately 100 species. Khromov et al. (1998) proposed a subdivision of the genus into six species complexes, which are not to be viewed as phylogenetic entities. Khromov (1998) suggested that five main stages could be seen in Sepiid radiation. One of the scenarios proposed by Khromov suggested that the Sepia sensu stricto forms (to which S. officinalis belongs) emerged in the Palaeogene (70 to 40 MYA). Khromov's scenario also suggested that these forms underwent a relatively recent radiation starting from the warm waters of the Tethyan Sea, and that the Western Mediterranean and Southern Atlantic European forms colonized the west coast of Africa. Recent studies on the biogeography of Sepiidae showed two radiation patterns: one to the southern African coasts, and the other to the 'East Indian' area. The southern African pattern is characterized by high disparity for very different species richness values. This pattern may be caused by the coexistence of two independent phylogenetic clusters of species, one from the Atlantic and the other from the Indian Ocean. This has to be viewed in the paleogeographical context of the Eocene (60-40 MYA), where the Tethyan Sea was still open at its eastern end providing a connection between Europe, on the one hand, and the Indian Ocean and east African coast, on the other. At the end of the Eocene, this eastern corridor between the Mediterranean and western India disappeared, involving a huge transformation in possible routes for cuttlefish migration. This could have produced two clusters of species, one in Europe and along the west African coast, the other in the Indian Ocean and along the east African coast. Mixing of these two clusters in southern Africa may have produced the present pattern (Neige 2003).

Allozyme (Pérez-Losada *et al.* 1999) and microsatellite markers (Pérez-Losada *et al.* 2002) display a highly significant subpopulation structuring of *S. officinalis* around the Iberian Peninsula, consistent with an isolation-by-distance model of low levels of gene flow. Distinct and significant clinal changes in allele frequencies between the Atlantic and the Mediterranean samples indicated, however, that these results might also be consistent with an alternative model of secondary contact and introgression between previously isolated and divergent populations. A pronounced 'step' change between SW Mediterranean samples associated with the Almería-Oran front suggest that this oceanographic feature may represent a contemporary barrier to gene flow.

Seasonal migrations between shallow and deeper waters are a well-known ecological feature of S. officinalis. In the Western Mediterranean populations a general tendency for the animals to migrate inshore in spring and summer for reproduction and move offshore in autumn was observed. although not all the animals migrate at the same time, size and age (Mangold 1966). These migrations are over different distances, from a few dozens to several hundred nautical miles, and represent an important displacement of biomass, which has also been observed in other regions (Richard 1971, Najaï 1983, Boucaud-Camou & Boismery 1991, Coelho & Martins 1991, Le Goff & Daguzan 1991b, Guerra & Castro 1988, Jorge & Sobral 2004). As pointed out by Boucaud-Camou & Boismery (1991), autumn S. officinalis offshore migration in winter in the English Channel is mainly influenced not only by cooling of the littoral waters, but also by day-length reduction and decreased light intensity, which are other factors influencing maturation and spawning (Boletzky 1983, Boucaud-Camou et al. 1991). Thus, the relatively deep milder waters at the central axis of the Channel seem to constitute the common hibernation area to all cuttlefishes in the Channel, which they leave at the end of the winter. Spring inshore displacements are mainly due to an increase of the temperature in littoral waters. These displacements were shown by tagging experiments (Boucaud-Camou & Boismery 1991), but this spatial and temporal pattern is also supported by the analysis of geo-referenced data measured at both sides of the English Channel (Dunn 1999, Denis & Robin 2001, Royer 2002, Wang et al. 2003). The role of strength of the Atlantic currents into the west part of the English Channel and the south part of the Celtic Sea was found to be the dominant influence on the timing of cuttlefish migration to these areas. Thus, the local abundance was positively correlated to sea surface temperature, with cuttlefish expanding their distribution further north in the spawning seasons in warm years and shifting in cool waters. The centre of high abundance in offshore deep water shifts north in warm winters and south in cool winters (Wang et al. 2003).

Trophic ecology

The diet of *S. officinalis* includes crustaceans, bony fishes, molluscs, polychaetes and nemertean worms (Nixon 1987, Castro & Guerra 1990, Pinczon du Sel *et al.* 2000). Species composition within these prey groups depends upon the respective species composition and availability in each ecosystem. Main crustacean prey items are mysids, shrimps, prawns, and crabs, but S. officinalis also feeds upon amphipods, isopods, and ostracods. The most important bony fishes found in the diet of the species were gobies, sand eels, whiting and wrasses, but cuttlefish can also prey upon some flatfishes. Among the cephalopods main food items include various sepiolids and sepiids species. Large cuttlefish are also cannibals, capturing and eating smaller individuals. Other small prey found in the stomach of this species, like bryozoans, foraminifera, bivalve molluscs and insects should be regarded with caution, because they can be the prey of prey, or accidentally ingested prey (Castro & Guerra 1990). S. officinalis shows a wide range of diets and should therefore be considered as a trophic opportunist. The species feeds exclusively on living animals, but in the laboratory it has been fed with different kind of surimi and pelleted diets, and non-living food (Castro et al. 1993, Koueta & Boucaud-Camou 1999, Perrin 2004). Significant ontogenetic changes in the diet of the species with the progressive replacement of crustaceans by fishes have been found (Castro & Guerra 1990). Ontogenetic changes in the prey size of this species are also well documented (Blanc et al. 1999, Blanc & Daguzan 2000). There were, however, no differences in feeding habits of male and female S. officinalis at any size, the feeding intensity of females increasing with sexual maturity, and no seasonal changes in diet were found (Castro & Guerra 1990).

An attempt to establish the trophic position of S. officinalis in an estuarine community (a Zostera meadow in San Simón inlet, Ría de Vigo) was undertaken by Filgueira and Castro (2002) based on the analysis of the stable isotopes C¹³ and N¹⁵ in its muscle and from sympatric organisms. Significant decreases in δ^{13} C and δ^{15} N were found related with cuttlefish size (15-195 mm ML) when these values were converted to trophic level. These results disagree with an expected increase in values corresponding to trophic level with predator size, and are in contradiction with previous knowledge of the common cuttlefish feeding ecology. These authors proposed a working hypothesis based on spawning migration. As cuttlefish approach maturity, they migrate to shallow waters, such as those of San Simón inlet, for spawning. Then, the smallest mature animals used in this study (60 mm ML for males and 80 mm ML for females) would probably not have left San Simón inlet yet, their isotopic composition representing the local food web. The largest animals present in San Simón were probably coming back from deeper waters, having an isotopic composition that does not depend initially on the local food web. Moreover, as the metabolic rate of large animals is lower than that of smaller ones, they would keep for longer time the isotopic signals from deeper waters before its body composition is in equilibrium with that of the

shallow area. If the food web of San Simón shows higher delta (δ) isotopic values than that from outside, a predator, such as cuttlefish, growing in that habitat, should show a heavier isotopic composition than a predator outside this area. Therefore, C and N isotopic composition of cuttlefish from San Simón would be inadequate for estimating its trophic level, and for testing the hypothesis that the trophic level of a predator increases with body size, because large and small animals could belong to different trophic webs.

Analyses using carbon- and oxygen-isotope composition [δ^{13} C (CO₃²⁻) and δ^{18} O (CO₃²⁻), respectively] in the cuttlebone aragonite of wild and cultivated specimens of *S. officinalis* from NW Spain showed that seasonal changes in isotopic temperature revealed by these analyses agreed with changes in surrounding sea water temperature: CaCO₃ was deposited in the cuttlebone all year round, a maximum life span of 2 years, a yearly spawning season, and the existence of variable growth rates among and within individuals can be inferred from isotopic temperatures (Bettencourt & Guerra 1999).

The tentacles of *S. officinalis*, when ejected, reach the prey in less than 15 milliseconds at 25°C. Prey is dealt with summarily. Thus, prawns are paralysed and bitten within six seconds of capture and crabs are paralysed in about ten seconds. The immobilisation of prey is provoked by neurotoxins secreted by the posterior salivary glands (Hanlon & Messenger 1996). If it exists, external digestion of prey seems to be very weak and many pieces of exoskeleton are ingested (Guerra *et al.* 1988).

Despite the small size of the mouth, cuttlefish can seize relatively large prey with their prehensile arms and tentacles. This, together with voracity, versatile feeding habits, and a highly evolved sensory system, allows them to occupy a broad trophic niche. Furthermore, migrations enable S. officinalis populations to exploit the temporal and spatial variability of productive systems and fluctuating populations of prey (Rodhouse & Nigmatullin 1996). Visual detection of prey involves movement, contrast, size, shape and orientation. The visual attack in this ambush predator when facing a prawn exhibits three phases: attention, positioning, and seizure (Hanlon & Messenger 1996). Data collected in two 24 h sampling operations carried out in August and February in the Ría de Vigo (NW Spain) suggested a 24 h feeding pattern for this species where most of the feeding occurred during darkness (Castro & Guerra 1989). Such a feeding pattern has been also described in South Brittany (Pinczon du Sel et al. 2000) and in the Ría Formosa lagoon (Quintela & Andrade 2002). These results suggest that S. officinalis, apart from visual detection, may also detect some prey by light emitted from their light organs, and that chemo- and mechanoreception (via statocysts and/or the lateral

line analogue) cannot be ruled out. Predation of non-luminous prey can be also facilitated by dinoflagellate luminescence (Fleisher & Case 1995).

Common cuttlefish have high absorption efficiency, which explains high growth rates and relatively low production of faeces. Forsythe *et al.* (1994) estimated a conversion efficiency of 59% in animals cultivated at 24°C and fed with shrimps, which showed a growth rate of 6.5 and a feeding rate of 11.0 (both rates in% body mass per day).

With very few exceptions, there are no fishes that are specialist cephalopod predators. Among the elasmobranches, lower beaks of S. officinalis were found in the stomach content of Prionace glauca (Clarke & Steven 1974). S. officinalis also occurred in the stomachs of Scyliorhinus canicula, Mustelus mustelus (Morte et al. 1997) and Galeus melastomus (Velasco et al. 2001). Among teleostei, it occurred in the stomach contents of Merluccius merluccius (Larrañeta 1970, Velasco et al. 2001). Hatchling and juvenile common cuttlefish are preyed upon by Serranus cabrilla in Posidonia grass areas of the Mediterranean (Hanlon & Messenger 1988). The species Pollachius pollachius exerts great predatory pressure on young cuttlefish in the French waters of north Brittany (Le Mao 1985). In the Bay of Biscay, Velasco *et al.* (2001) found S. officinalis in the stomach contents of Pagelus acarne, Aspitrigla cuculus, A. obscura, Lophius piscatorius, L. budegassa, Trisopterus luscus, Lepidorhombus whiffiagonis and L. boscii. Young cuttlefish were observed in the stomach contents of Dicentrarchus labrax, Labrus bergylta, Spondyliosoma cantharus and Conger conger in Morbihan Bay (Blanc & Daguzan 1999).

A total of 12 specimens of *S. officinalis* were found in a Risso's dolphin (*Grampus griseus*) (Clarke & Pascoe 1985). To date, the species has not been clearly identified in the stomach contents of other marine mammals, except in monk seals (*Monachus monachus*) from the Aegean Sea (Salman *et al.* 2001). However, some remains identified as *Sepia* sp, *Sepia* spp or simply Sepiidae were observed in the harbour porpoise (*Phocoena phocoena*), and in the dolphins *Tursiops truncatus*, *Delphinus delphis* and *Stenella coeruleoalba* (Santos 1998).

It has been suggested that the ecological niche of a cephalopod species is more important in determining its risk of parasite infection than its phylogeny, and that *S. officinalis* should be included in one ecological coastal group (González *et al.* 2003). The virus-like particles found in the stomach epithelium of wild *S. officinalis* have a structure similar to vertebrate 'Retrovirus' (Hanlon & Forsythe 1990). Cultured in the laboratory, this species showed susceptibility to a highly virulent systemic infection by bacteria (*Pseudomonas* and *Vibrio*), which does not appear to be related to external injury (Hanlon & Forsythe 1990). Diseases may be caused by other protistans and coccidians, metazoans such fungi, as microsporidians, ciliates, dicyemids, diageneans, cestodes, nematodes, brachyurans, copepods and isopods (Hochberg 1990). Many of these parasites are transmitted through the food web. Sexual stages of the coccidian Aggregata eberthi occur in the digestive tract of S. officinalis, and asexual stages infect the digestive tract of crustaceans. The complete life cycle of A. eberthi in NE Atlantic was only achieved when experimental infections showed that the prawns Palaemon elegans and P. adpersus are the intermediate hosts for this parasite (Gestal et al. 2002a).

Demographic ecology

Considering its reproductive traits, S. officinalis has been included in the group termed 'Intermittent terminal spawning' (Rocha et al. 2001). This reproductive pattern is characterized by the fact that all species included spawn once, ovulation is groupsynchronous, spawning is monocyclic, egg lying occurs in separate batches, and somatic growth does not generally take place between spawning events. In such a species, spawning period tends to be relatively long. The main spawning season of S. officinalis in the Western Mediterranean and the Gulf of Tunis covers spring and summer, but winter spawning has also been observed (Mangold-Wirz 1963, Najaï 1983). The spawning period extends from early spring and late summer in south and central Portugal and both the Atlantic and Mediterranean coast of South Spain, with a spawning peak in June and July (Villa 1998, Tirado et al. 2003, Jorge & Sobral 2004). The spawning season of this species within the downed estuarine valleys in NW of the Iberian Peninsula extends from early spring to late summer, but winter spawning has also been recorded (Guerra & Castro 1988). The spawning season in the Bay of Biscay and the Gulf of Morbihan lasts for six months, from mid-March to late June (Le Goff & Daguzan 1991a). Along both the north and the south coast of the English Channel the spawning season of S. officinalis extends from February to July (Dunn 1999, Royer 2002, Wang et al. 2003). Environmental factors (much milder winter conditions in some areas than in others) probably account for most of the variations observed in S. officinalis spawning times (Boletzky 1983). It also has been observed that a restriction of food intake in early life may delay maturation and extend life span in this species (Boletzky 1979).

Studies on fecundity carried out by Laptikhovsky et al. (2003) showed that the potential fecundity (PF) of advanced maturing and mature pre-spawning *S. officinalis* in the Aegean Sea varies from 3,700 to 8,000 (mean 5,871) oocytes, whereas the number of large yolk oocytes increase with ML from 130 to 839. These authors also observed that spawning females have a PF of some 1,000-3,000 eggs below that of pre-spawning females. This provides evidence that intermittent spawning, which occurs in captivity (Boletzky 1987), is a normal process in natural habitats, suggesting that common cuttlefish females release a number of eggs equivalent to about 50% of PF during spawning, although many individual variants are possible under wild conditions.

S. officinalis generally lays eggs at depths rarely greater than 30 or 40 m. The eggs are attached in clusters to various plants, sessile animals such as tube worms, or dead structures such as drowned trees, cables or nets. No parental care has been reported in this species, but no major predation pressure on the eggs has been observed. The length of embryonic development is temperature dependent (Boletzky 1983). Hatchlings of this species have a mantle length that may vary from 6 to 9 mm, and are strikingly similar to adults both in morphology and basic behaviour. Hatching generally occurs at a stage sufficiently advanced to enhance active feeding within hours after hatching. Young cuttlefishes can adapt to very low food intake and maintain growth rates much lower than normal. This provides a margin of safety allowing animals to survive under unfavourable conditions (Boletzky 1983).

Common cuttlefish live for approximately two years, although some male individuals may attain a greater age. Females die shortly after spawning, although this event can extend over several weeks or even months in the laboratory. Mass mortality, after the spawning season, has been observed in the French and Spanish Atlantic coasts (Richard 1971 and pers obs), but nothing of comparable intensity is known in the Mediterranean (Boletzky 1983).

There can be several causes of death among the common cuttlefish in a population: removal by fishing, predation, diseases, accident, etc., each with its own rate. It is a usual practice in population dynamic studies to consider a division into only two types: fishing, and natural mortality, which includes everything else. Each kind of mortality has it own instantaneous rate (Ricker 1975). In an ideal scenario, the natural mortality could be differentiated by different causes. In practice, this is, however, very difficult. Preliminary results of a management exercise of S. officinalis gillnet fishery in San Simón inlet for the period 1997-2001 demonstrated that monthly instantaneous rate of natural mortality (M) over a six-month period (from November to April) ranged from 2.27 to 3.38, the mean being 2.70 (Outeirial 2002, Rocha & Guerra unpubl). These values were estimated by different methods exclusively based on the biological parameters obtained by Guerra & Castro (1988) and Bettencourt (2000) from the S. officinalis populations within the Galician Rías, and are similar to those calculated by Emam (1994) in the Sepia prashadi exploited population from the Gulf of Suez. The concept of an "instantaneous" rate can be troublesome to readerships not familiar with population dynamics. There is, however, an excellent explanation of this concept in Ricker (1975). The mean value of M estimated for the S. officinalis of San Simon inlet corresponds to an annual mortality rate (A) of approximately 93% of the total number of individuals of a given population, which is very high. That mortality rate suggests a catastrophic post-spawning mortality, which has been corroborated in the species by both field and laboratory observations. However, when M is used in different stock assessment methods (Pierce & Guerra 1994) its value ranges from 0.1 to 0.6. The remaining mortality is due to fishing (F).

S. officinalis constitutes part of the diet of many marine predators at different stages of their life cycle, but natural mortality rates caused by predation have not yet been evaluated. Although various parasites are known in juvenile and adult S. officinalis, most of them do not appear to be important as a natural mortality factor at pre-reproductive stages (Hochberg 1990). Nevertheless, a detrimental effect on gastrointestinal function by high digestive tract infections with Aggregata eberthi might result in a decrease or malfunction of absorption enzymes (Gestal et al. 2002b).

How many units of population conforms *S.* officinalis within its area of distribution is something still unknown. However, from an exploitation point of view, cuttlefish concentrations within the English Channel are considered as a management unit. This is mainly due to the fact that catch per unit effort is lower in the adjacent waters of the Bay of Biscay and the Celtic Sea than in the English Channel (Denis & Robin 2001).

Common cuttlefish can exhibit variations in its life cycle along its geographic range. Around the Iberian Peninsula and in the Mediterranean Sea, spawning female sizes range from 90 to 320 mm ML. This suggests the presence of two-year classes of breeders in the population, and the population structure of S. officinalis may superficially look simple, with seldom more than two annual cohorts or a cycle of alternating shorter and longer generations, at least as far as the female individuals are concerned (Boletzky 1983). However, as cuttlefish may attain sexual maturity at very different sizes, spawning occurs over a long time period when compared to life span, the duration of egg development is dependent on temperature, and its growth is very much depending on environmental factors (Bouchaud & Daguzan 1990, Forsythe et al. 1994, Clarke et al. 1989, Dunn 1999, Bettencourt 2000, Domingues et al. 2002, Koueta & Boucaud-Camou 2003). Recruitment of successive broods reveals subgroups, cohorts or 'micro-cohorts', whose age at recruitment varies significantly between seasons and cohorts, demonstrating different growth rates among them, and there are large interannual variations in recruitment (Challier *et al.* 2002, Challier 2005), so a more complex demographic pattern is underlined. Factors affecting recruitment are, therefore, of key importance in understanding the population dynamics of this species (Challier 2005).

A consistent biannual life cycle has been described in the English Channel (Dunn 1999, Royer 2002). Hatchlings born from July to September grow rapidly, and the juveniles migrate from the inshore nursery grounds in late autumn to overwintering grounds in deeper waters. The following spring they return inshore, and begin to exhibit the first signs of sexual maturation. Males start to mature at a mean ML of about 100 mm, and most are mature by September (about 13 months old). Female maturation begins slightly later, and takes longer, with the final stages of female maturation occurring during the following winter. After a second offshore migration to overwintering grounds the adult cuttlefish (approximately 18 months old) return inshore in the spring to spawn and then die. In south Brittany, some of the juveniles born from mid-March to late June begin their sexual development as early as November for males and late December for females. These precocious individuals require only one year to complete their life cycle, and constitute small size breeders (80-100 mm ML). However, most individuals reproduce after a second offshore-inshore migration, they constitute a second group of breeders (130-350 mm ML). These two-year classes of breeding cuttlefish are not reproductively separated (Gauvrit et al. 1998).

Behavioural ecology

The seasonal migrations between shallow and deeper waters bring *S. officinalis* into contact with various types of soft and rocky bottoms. The ability of small juveniles to attach themselves to a hard substrate may be very important because it allows them to withstand strong water movement without being carried away. These animals are able to bury themselves in soft bottoms, and the behavioural pattern of this sand covering is well established at hatching (Boletzky 1983).

The entire morphology of this species reflects adaptation to life near or on the bottom in a very complex environment. Moreover, *S. officinalis* has a considerable repertoire of defensive strategies involving a large number of chromatic, textural and postural components (Hanlon & Messenger 1996). Detailed studies on defence sequences of young and adult *S. officinalis* show complicated and different behavioural patterns. However, these tactics were mainly observed under laboratory conditions and, therefore, caution must be invoked when extrapolating to wild conditions (Hanlon & Messenger 1996). Dickel *et al* (2000) provided evidence that the environment during the 2nd and/or 3rd months of life was crucial to the ontogenetic development of memory in *S. officinalis*.

The reproductive behaviour in this species is well known (Hanlon & Messenger 1996). A single pair can mate several times in succession, sometimes intermixed with egg lying. Under culture conditions temporary mate guarding by the male has been observed. However, when guarding relaxes, other mature males can copulate with the female. Therefore, there is evidence of promiscuity, at least in the laboratory, where some results obtained using microsatellite DNA (Guerra unpubl data) and from behavioural studies (Hanlon *et al.* 1999) provide evidence that sperm competition may be a major feature of the mating behaviour in this species.

Some general ecological remarks

S. officinalis has life-cycle characteristics known in other coleoid cephalopods: early sexual maturation, extended spawning season, breeding once, catholic predator habits, rapid growth with variable growth rates depending on environmental factors, short life-span, little overlap of generations, and complex recruitment. However, in contrast to other species, mainly those that are pelagic throughout their life cycle (e.g. ommastrephid squids) or those with planktonic paralarval stages (e.g. some octopods), S. officinalis is not so vulnerable to predation and environmental variables. This is mainly due to the fact that the new hatchlings of this species are almost miniature adults, both in morphology and behaviour, and also because their physiological layout is highly flexible (Nixon & Mangold 1998). In consequence, this species does not show as much unpredictability of distribution and density as other cephalopod species (Boyle & Boletzky 1996).

As all cephalopods, *S. officinalis* shows relatively low levels of genetic variation (Sanjuan *et al.* 1996, Shaw & Pérez-Losada 2000), and its population dynamics appears to be influenced principally by phenotypic plasticity in response to environmental variability, and the maintenance of this diversity balances the risks of mortality factors combining at any one time to cause periodic extinctions (Boyle & Boletzky 1996). The change in the faunistic composition of the communities observed in the Sahara Bank showed that major ecological perturbations, such as environmental shifts or imposed effects such as commercial fishing, have an important impact on *S. officinalis* and other cephalopod populations (Boyle & Boletzky 1996).

Whether or not *S. officinalis* fits into the generalizable *r*-or *K*-strategies, and in view of the doubts expressed by Stearns (1992) on the value of these strategies to the interpretation of life histories, a theoretical framework for cephalopod life cycle is perhaps premature (Boyle & Rodhouse 2005). It is best to consider that this species shows a complex set of covarying traits which constitute both strategies throughout its life cycle, as indicated by Calow (1987).

ACKNOWLEDGEMENTS. – The author would like to thank his colleagues Drs A F González, F Rocha, S Pascual & N Koueta for the helpful discussions maintained on many of the aspects presented in this paper. I am also very grateful to M T Fernández for her constant and useful technical assistance. Finally, I wish to express my gratitude to Drs S von Boletzky & J P Andrade for their valuable comments and suggestions that largely improved the manuscript.

REFERENCES

- Balguerias E, Quintero ME, Hernández-González CL 2000. The origin of the Sahara Bank cephalopod fishery. *ICES J Mar Sci* 57: 15-23.
- Bettencourt V 2000. Idade e crescimento do choco, *Sepia officinalis* L. Ph D Thesis, Univ Algave, Portugal: 196 p.
- Bettencourt V, Guerra A 1999. Carbon and oxygen isotope composition of the cuttlebone of *Sepia officinalis*: a tool for predicting ecological information? *Mar Biol* 133(4): 651-657.
- Blanc A, Daguzan J 1999. Young cuttlefish Sepia officinalis (Mollusca: Sepiidae) in the Morbihan Bay (South Brittany, France): accessory prey of predators. J mar biol Ass U K 79: 1133-1134.
- Blanc A, Daguzan J 2000. Size selectivity in the diet of the young cuttlefish *Sepia officinalis* (Mollusca: Sepidae). *J mar biol Ass UK* 80: 1137-1138.
- Blanc A, Pinczon du Sel G, Daguzan J 1999. Relationship between the length of the prey/predator for the most important prey of the cuttlefish *Sepia officinalis* L. (Mollusca, Cephalopoda). *Malacologia* 41: 139-145.
- Boal JG, Hylton RA, González SA, Hanlon RT 1999. Effects of crowding on the social behaviour of cuttlefish (*Sepia officinalis*). Contemp Top Lab Anim 38(1): 49-55.
- Boletzky Sv. 1979. Growth and life-span of *Sepia offici*nalis under artificial conditions (Mollusca, Cephalopoda). *Rapp Comm Int Mer Medit* 25/26: 159-168.
- Boletzky Sv 1983. Sepia officinalis. In Boyle, PR ed, Cephalopod Life Cycles. Vol I. Species account. Academic Press, London: 31-52.
- Boletzky Sv 1987. Fecundity variation in relation to intermittent or chronic spawning in the cuttlefish, *Sepia* officinalis L. (Mollusca, Cephalopoda). Bull Mar Sci 40 (2): 382-397.
- Boucaud-Camou E, Boismery J 1991. The migrations of the cuttlefish (*Sepia officinalis* L.) in the English Channel. *In* Boucaud-Camou E ed, The cuttlefish.

Actes 1^{er} Sympos intern sur la Seiche, Centre Publ Univ Caen: 179-189.

- Boucaud-Camou R, Koueta K, Boismery J Medhioub A 1991. Sexual cycle of *Sepia officinalis* L. from the Bay of Seine. *In* Boucaud-Camou E ed, The cuttlefish. Actes 1^{er} Sympos intern sur la Seiche, Centre Publ Univ Caen: 141-151.
- Bouchaud O, Daguzan J 1990. Étude expérimentale de l'influence de la température sur le déroulement embryonnaire de la Seiche Sepia officinalis L. (Céphalopode, Sepiidae). Cah Biol Mar 31: 131-145.
- Boyle PR, Boletzky Sv 1996. Cephalopod populations: definition and dynamics. *In* Clarke MR ed, The role of cephalopods in the world's oceans. *Phil Trans Roy Soc London B* 351 (1343): 885-1002.
- Boyle PR, Rodhouse PG 2005. Cephalopods. Ecology and Fisheries, Blackwell Publishing, 464 p.
- Brix O, Colosimo A, Giardina B 1994. Temperature dependence of oxygen binding to cephalopod haemocyanins: Ecological implications. *In* Pörtner O, O'Dor RK & Macmillan DL eds, Physiology of Cephalopod Molluscs, Gordon & Breach Publishers: 149-162.
- Bustamante P, Teyssié JL, Fowler SW, Cotret O, Danis B, Miramand P, Warnau M 2002. Biokinetics of zinc and cadmium accumulation and depuration at different stages in the life cycle of the cuttlefish Sepia officinalis. Mar Ecol Prog Ser 231: 167-177.
- Calow P 1987. Fact and theory-an overview. In: Boyle PR ed, Cephalopods Life Cycles, Vol. II: Comparative Reviews, Academic Press, London: 351-365.
- Castro BG, Guerra A 1989. Feeding pattern of Sepia officinalis (Cephalopoda, Sepioidea) in the Ría de Vigo (NW Spain). J mar biol Ass UK 69: 545-553.
- Castro BG, Guerra A 1990. The diet of *Sepia officinalis* and *Sepia elegans* (Cephalopoda, Sepioidea) from the Ría de Vigo. *Sci Mar* 54(4): 375-388.
- Castro BG, Di Marco FP, DeRusha RH, Lee PG 1993. The effects of surimi and pelleted diets on the laboratory survival, growth, and feeding rate of the cuttlefish *Sepia officinalis* L. *J Exp Mar Biol Ecol* 170: 241-252.
- Challier L 2005. Variabilité de la croissance des Céphalopodes juvéniles (*Sepia officinalis, Loligo forbesi*) et relation avec les fluctuations du recrutement, en Manche. Thèse Doct Univ Caen: 181 p.
- Challier L, Royer J, Robin JP 2002. Variability in ageat-recruitment and early growth in English Channel *Sepia officinalis* described with statolith analysis. *Aquat Living Resour* 15: 303-311.
- Clarke, MR Stevens JD 1974. Cephalopods, blue sharks and migrations. J mar biol Ass UK 54: 949-957.
- Clarke MR, Pascoe PL 1985. The stomach contents of a Risso's dolphin (*Grampus griseus*) stranded at Thurlestone South Devon. *J mar biol Ass UK* 65: 663-665.
- Clarke A, Rodhouse PG, Holmes LJ, Pascoe PL 1989. Growth rate and nucleic acid ratio in cultured cuttlefish *Sepia officinalis* (Mollusca: Cephalopoda). *J Exp Mar Biol Ecol* 133: 229-240.
- Coelho L, Martins C 1991. Preliminary observations on the biology of *Sepia officinalis* in the Ria Formosa, Portugal. *In* Boucaud-Camou E ed, The cuttlefish, Actes 1^{er} Sympos intern Seiche, Centre Publ Univ Caen: 169-184.

- Denis V, Robin JP 2001. Present status of the French Atlantic fishery for cuttlefish (*Sepia officinalis*). Fish Res 52: 11-22.
- Dickel L, Bola, JG, Budelmann BU 2000. The effect of early experience on learning and memory in cuttlefish. *Devel Physchol* 36: 101-110.
- Domingues PM, Kingston T, Sykes A, Andrade JP 2001. Growth of young cuttlefish, *Sepia officinalis* (L., 1758) at the upper end of the biological distribution temperature range. *Aquac Res* 32(1): 923-930.
- Domingues PM, Sykes A, Andrade JP 2002. The effects of temperature in the life cycle of two consecutive generations of the cuttlefish *Sepia officinalis* L. cultured in the Algarve (South Portugal). *Aquac Int* 10: 207-220.
- Domingues PM, Poidier R, Dickel L, Almansa E, Sykes A, Andrade JP 2003. Effects of culture densities and live prey on growth and survival of juvenile cuttle-fish, *Sepia officinalis. Aquac Int* 11: 225-242.
- Dunn MR 1999. Aspects of the stock dynamics and exploitation of cuttlefish, *Sepia officinalis* (Linnaeus, 1758) in the English Channel. *Fish Res* 40: 277-293.
- Emam WM 1994. Stock assessment of the cuttlefish *Sepia prashadi* (Mollusca: Cephalopoda) in the Gulf of Suez. *Indian J Mar Sci* 23: 35-38.
- Filgueira R, Castro BG 2002. Relationship between trophic position and size of cuttlefish *Sepia officinalis* L.: do stable isotopes give the right answer? *In* Rolán E & Troncoso J eds, II Congr Inter Soc Malac Europ, Vigo: 93.
- Fleisher KJ, Case JF 1995. Cephalopod predation facilitated by dinoflagellate luminescence. *Biol Bull* 189: 263-271.
- Forsythe JW, de Rusha RH, Hanlon RT 1994. Growth, reproduction and life-span of *Sepia officinalis* (Cephalopoda: Mollusca) culture through seven consecutive generations. *J Zool Lond* 233: 175-192.
- Gauvrit E, Pinczon du Sel G, Blanc A, Daguzan J 1998. Detection of cross-mating between two generations of the cuttlefish *Sepia officinalis* by sperm reservoir analysis. *J Moll Stud* 64: 1-9.
- Gestal C, Guerra A, Pascual S, Azevedo C 2002a. On the life cycle of *Aggregata eberthi* and *A. octopiana* (Aplicomplexa, Aggregatidae) from Galicia (NE Atlantic). *Eur J Protistol* 37: 427-435.
- Gestal C, Páez de la Cadena M, Pascual, S 2002b. Malabsorption syndrome observed in the common octopus Octopus vulgaris infected with Aggregata octopiana (Protista: Apicomplexa). Dis Aquat Org 51: 61-65.
- González AF, Pascual S, Gestal C, Abollo E, Guerra A 2003. What makes a cephalopod a suitable host for parasite? The case of Galician waters. *Fish Res* 60: 177-183.
- Grigioni S, Boucher-Rodoni R 2002. Symbiotic associations in Sepia officinalis. Bull Mar Sci 71(2): 1124.
- Guerra A, Sánchez P 1985. Comparación de las pesquerías de cefalópodos de dos áreas de afloramiento de la costa occidental africana. *Simp Intern Aflor Inst Inves Pesq Barcelona* II: 749-760.
- Guerra A, Castro BG 1988. On the life cycle of *Sepia officinalis* (Cephalopoda, Sepioidea) in the Ría de Vigo (NW Spain). *Cah Biol Mar* 29: 395-405.

- Guerra A, Nixon M, Castro BG 1988. Initial stages of food ingestion by *Sepia officinalis*. J Zool Lond 214: 189-197.
- Guerra A, Pérez-Losada M, Rocha F, Sanjuán A 2001. Species differentiation of *Sepia officinalis* and *Sepia hierredda* (Cephalopoda: Sepiidae) based on morphological and allozyme analyses. *J mar biol Ass UK* 81: 271-281.
- Hanlon RT, Messenger JB 1988. Adaptative coloration in young cuttlefish (*Sepia officinalis* L.): the morphology and development of body patterns and their relation to behaviour. *Phil Trans Roy Soc London B*, 320: 437-487.
- Hanlon RT, Forsythe JW 1990. Diseases caused by microorganisms. *In* Kinne O ed, Diseases of Marine Animals, Vol. III. Diseases of Mollusca: Cephalopoda. Biol Anst Helgoland, Hamburg: 23-47.
- Hanlon RT, Messenger JB 1996. Cephalopod Behaviour. Cambridge University Press, 232 p.
- Hanlon RY, Ament SA Gabr H 1999. Behavioral aspects of sperm competition in cuttlefish, *Sepia officinalis* (Sepioidea: Cephalopoda). *Mar Biol* 134: 719-728.
- Ho J-S 1983. Metaxymolgus longicaudata (Claus), a copepod associated with the cuttlefish, Sepia officinalis L. J mar biol Ass UK 63: 199-203.
- Hochberg FG 1990. Diseases caused by protistans and metazoans. *In* Kinne O ed, Diseases of Marine Animals III, Diseases of Mollusca: Cephalopoda, Biol Anst Helgoland, Hamburg: 47-202.
- Jorge I, Sobral MP 2004. Alguns aspectos da biología e ecología da população de choco, Sepia officinalis da região de Averio. Relat Cient Téc IPIMAR, sér digit 15: 29 p.
- Johansen K, Kornerup S, Lykkeboe G 1982. Factors affecting O₂-uptake in the cuttlefish, Sepia officinalis. J mar biol Ass UK 62: 187-191.
- Khromov DN 1998. Distribution patters of Sepiidae. In Voss NA, Vecchione M, Toll RB & Sweeney MJ, Systematics and Biogeography of Cephalopods. Smith Cont Zool 586: 191-206.
- Khromov DN, Lu CC, Guerra A, Dong Zh, Boletzky Sv 1998. A synopsis of Sepiidae outside Australian waters (Cephalopoda: Sepioidea). In Voss, NA, Vecchione M, Toll RB & Sweeney MJ, Systematics and Biogeography of Cephalopods. Smith Contr Zool 586: 77-130.
- Koueta N, Boucaud-Camou E 1999. Food intake and growth in reared early juvenile cuttlefish *Sepia officinalis* L. (Mollusca, Cephalopoda). *J Exp Mar Biol Ecol* 240: 93-109.
- Koueta N, Boucaud-Camou E 2003. Combined effects of photoperiod and feeding frequency on survival and growth of juvenile cuttlefish *Sepia officinalis* L. in experimental rearing. *J Exp Mar Biol Ecol* 296: 215-226.
- Larrañeta MG 1970. Sobre la alimentación, la madurez sexual y la talla de primera captura de *Merluccius merluccius* (L.). *Inv Pesq* 34: 267-280.
- Laptikhovsky V, Salman A, Önsoy B, Katagan T 2003. Fecundity of the common cuttlefish, *Sepia officinalis* L. (Cephalopoda, Sepiidae): a new look at an old problem. *Sci Mar* 67: 279-284.
- Le Bihan E, Perrin A, Koueta N 2004. Development of a bioassay from isolated digestive gland cells of the cuttlefish *Sepia officinalis* L. (Mollusca Cephalopo-

da): effect of Cu, Zn and Ag on enzyme activities and cell viability. *J Exp Mar Biol Ecol* 309: 47-66.

- Le Goff R, Daguzan J 1991a. Growth and life cycles of the cuttlefish *Sepia officinalis* L. (Mollusca: Cephalopoda) in South Brittany (France). *Bull Mar Sci* 49: 341-348.
- Le Goff R, Daguzan J 1991b. Étude des déplacements de la Seiche commune *Sepia officinalis* L. dans le Golfe du Morbihan au cours de la période de la reproduction. Premiers résultats. *In* Boucaud-Camou E ed, The cuttlefish. Centre Publi Univ Caen: 167-177.
- Le Mao P 1985. Place de la Seiche *Sepia officinalis* (Mollusque, Céphalopode) dans les chaînes alimentaires du Golfe Normano-Breton. *Cah Biol Mar* 26: 331-340.
- Mangold-Wirz K 1963. Biologie des Céphalopodes benthiques et nectoniques de la Mer Catalane. *Vie Milieu* suppl 13, 285 p.
- Mangold K 1966. *Sepia officinalis* de la Mer Calalane. *Vie Milieu* 17A: 961-1012.
- Melzner F, Bock C, Pörtner HO 2004. Coordination of ventilation and circulation in the cuttlefish *Sepia officinalis* in the light of an oxygen limitation of thermal tolerance. *ICES CM 2004* / CC: 14: 280-281.
- Miramand P, Bentley D 1992. Concentration and distribution of heavy metals in tissues of two cephalopods, *Eledone cirrhosa* and *Sepia officinalis*, from the French coast of the English Channel. *Mar Biol* 114: 407-414.
- Morte S, Redon MJ, Sanz-Brau A 1997. Feeding habits of juvenile *Mustelus mustelus* (Carcharhiformes, Triakidae) in the western Mediterranean. *Cah Biol Mar* 38: 103-107.
- Najaï S 1983. Contribution à l'étude des Céphalopodes de Tunisie. Application à l'espèce *Sepia officinalis* Linné, 1758. Thèse 3^e cycle, Univ Tunis: 229 p.
- Neige P 2003. Spatial pattern of disparity and diversity of the recent cuttlefishes (Cephalopoda) across the Old World. *J Biogeor* 30: 1125-1137.
- Nixon M 1987. Cephalopod diets. In Boyle PR ed, Cephalopod Life Cycles II. Comparative reviews, Academic Press, London: 201-219.
- Nixon M, Mangold K 1998. The early life of *Sepia officinalis*, and the contrast with that of *Octopus vulgaris* (Cephalopoda). *J Zool Lond* 245: 407-421.
- Outeiral R 2002. La pesquería de *Sepia officinalis* en Galicia: Aplicación de un modelo basado en entrevistas sobre estadísticas pesqueras. Tesis Licenciatura, Univ Vigo: 90 p.
- Paulij WP, Bogaards RH, Denucé JM 1990. Influence of salinity on embryonic development and the distribution of *Sepia officinalis* in the Delta Area (South Western part of The Netherlands). *Mar Biol* 107: 17-23.
- Pérez-Losada M, Guerra A, Sanjuán A 1999. Allozyme differentiation in the cuttlefish *Sepia officinalis* from the NE Atlantic and the Mediterranean. *Heredity* 83: 280-289.
- Pérez-Losada M, Guerra A, Carvalho GR, Sanjuán A, Shaw PW 2002. Extensive population subdivision of the cuttlefish *Sepia officinalis* (Mollusca: Cephalopoda) around the Iberian Peninsula indicated by microsatellite DNA variation. *Heredity* 89: 417-424.
- Perrin MA 2004. Étude expérimentale des capacités digestives chez la Seiche, Sepia officinalis L. (Mol-

lusque, Céphalopode): Impact de l'alimentation, indice de condition nutritionelle et formulation d'un aliment artificiel. Thèse Doct, Univ Caen: 153 p.

- Pierce GJ, Guerra A 1994. Stock assessment methods used for cephalopod fisheries. *Fish Res* 21: 255-285.
- Pinczon du Sel G, Blanc A, Daguzan J 2000. The diet of the cuttlefish *Sepia officinalis* L. (Mollusca: Cephalopoda) during its life cycle in the Northern Bay of Biscay (France). *Aquat Sci* 61: 167-178.
- Quintela J, Andrade JP 2002. Diel feeding rhythms, daily ration and gastric evacuation rates of *Sepia officinalis* in the Ria Formosa Lagoon (South Portugal). *Bull Mar Sci* 71(2): 665-680.
- Richard A 1971. Contribution à l'étude expérimentale de la croissance et la maturation sexuelle de *Sepia officinalis*. Thèse d'état, Univ Lille: 264 p.
- Ricker WE 1975. Computation and interpretation of biological statistics of fish populations. *Bull Fish Res Bd Canada* 191, 382 p.
- Rocha F, Guerra A, González AF 2001. A review of the reproductive strategies in cephalopods. *Biol Rev* 76: 291-304.
- Rodhouse PG, Nigmatullin ChM 1996. Role as consumers. *In* Clarke MR ed, The role of cephalopods in the world's oceans. *Phil Trans Roy Soc London Ser B* 351 (1343): 1003-1022.
- Royer J 2002. Modélisation des stocks de Céphalopodes de Manche. Thèse 3^e cycle, Univ Caen: 242 p.
- Salman A, Bilecenoglu M, Güçlüsoy H 2001. Stomach contents of two Mediterranean monk seals (*Monachus* monachus) from the Aegean Sea, Turkey. J mar biol Ass UK 81: 719-720.
- Sanjuan A, Pérez-Losada M, Guerra A 1996. Intra and interspecific genetic differentiation in three species of *Sepia* (Mollusca: Cephalopoda) from Galician waters (NW Iberian Peninsula). *Mar Biol* 126: 253-259.
- Santos MB 1998. Feeding ecology of harbour porpoises, common and bottlenose dolphins and sperm whales in the Northeast Atlantic. PhD Thesis, Univ Aberdeen: 284 p.
- Schipp R, Boletzky Sv 1998. Congenital malformation of the systemic heart of *Sepia officinalis* L.: morphological, phylogenetic and ecotoxicological aspects. *In* Payne AI *et al.* eds, Cephalopod Biodiversity, Ecology and Evolution. *S Afr J mar Sci* 20: 25-27.
- Shaw PW, Pérez-Losada M 2000. Polimorphic microsatellites in the common cuttlefish *Sepia officinalis* (Cephalopoda). *Mol Ecol* 9: 237-238.
- Sobrino I, Silva L, Bellido JM, Ramos F 2002. Rainfall, river discharges and sea temperature as factors affecting abundance of two coastal benthic cephalopod species in the Gulf of Cádiz (SW Spain). *Bull Mar Sci* 71: 851-865.
- Stearns SC 1992. The Evolution of Life Histories. New York, Oxford University Press.
- Tirado C, Rodríguez de la Rúa A, Bruzón MA, López JI, Salas C, Márquez I 2003. La reproducción del pulpo (*Octopus vulgaris*) y el choco (*Sepia officinalis*) en la costa andaluza. Junta de Andalucía, Cons Agricult Pesca, 159 p.
- Van Den Branden C, Gillis M, Richard A 1980. Carotenoid producing bacteria in the accessory nidamental glands of *Sepia officinalis*. Comp Biochem Physiol 66B: 331-334.

- Velasco F, Olaso I, Sánchez F 2001. The role of cephalopods as forage for the demersal fish community in the Southern Bay of Biscay. *Fish Res* 52: 65-77.
- Villa H 1998. Estudo de alguns aspectos da biologia reproductive de la espécie *Sepia officinalis* (Linnaeus, 1998). Msc Thesis, Univ Algarve: 82 p.
- Ward PD, Boletzky Sv 1984. Shell implosion depth and implosion morphologies in three species of *Sepia* (Cephalopoda) from the Mediterranean Sea. *J mar biol Ass UK* 64: 955-966.
- Wang J, Pierce GJ, Boyle PR, Denis V, Robin JP, Bellido JM 2003. Spatial and temporal patterns of cuttlefish (*Sepia officinalis*) abundance and environmental

influences – a case study using trawl fishery data in French Atlantic coastal, English Channel, and adjacent waters. *ICES J Mar Sci* 60: 1149-1158.

- Warnke K 1994. Some aspects of social interaction during feeding in *Sepia officinalis* (Mollusca: Cephalopoda) hatched and reared in the laboratory. *Vie Milieu* 44 (2): 125-131.
- Webber DM, Aitken JP, O'Dor RK 2000. Costs of locomotion and vertic dynamics of cephalopods and fish. *Phys Bioch Zool* 73(6): 651-662.

Received September 21, 2005 Accepted October 20, 2005