ABSTRACT. – Some problems arising from the sampling and recording of diatoms from acidic freshwater, epiphytic habitats are discussed. This led to further study of data assemblages recorded from more general low pH sites and suggestions for more definitive clusters of diatoms related to narrow pH ranges. Finally, some brief thoughts on the identification of diatoms and the stability of diatom morphology at the species level.

Very few attempts have been made to sample epiphytic diatoms, though every macrophyte in both freshwaters and marine habitats supports an attached flora of diatoms often associated with species from other algal groups. One notable study concentrating on *Tabellaria* growing on *Phragmites* in lakes in Cumbria (Knudson 1957) has never been followed up. I was alerted to the problem on reading a recent paper by Nygaard (1999) recording a long list of “epiphytic” species in the Danish lake Grane Langsø. This listing raises important questions which I wish to pursue in the light of my studies of diatoms in ponds, lakes and rivers where the epiphytic flora usually tends to be dominated by a few (3–4) species. Some of the important prime users of the basic floristic data on diatoms are applied scientists involved in methods for studying water pollution, river/lake management, etc., and it is essential that the exact site where the diatoms grow is specified and when recording the species on microscope slides the species names are correct.

Diatom species have very specific requirements in terms of habitat – the species “know” exactly where they can grow. However, because waters are not stationary, species can be circulated to varying degrees by water, animal, etc. movement. Thus casual (contaminating) species can occur in any sample. Epiphytes are, by definition, attached though not all are immobile, and when released from their attachment structure some can be highly motile, e.g. *Gomphonema* spp. In my opinion samples should be of single hosts but when this is not possible the individual hosts should be separated not lumped as a single entity as in Nygaard (1999). Gentle washing will help to remove contaminants. The presence of green filamentous algae or other epiphytes should be treated separately. Hopefully the result will be a sample containing few contaminants – no sample will ever be completely free of stray organisms. In some water bodies the host plants become surrounded by a loose mucilage (I believe largely produced by the epiphytes) and in this mucilage other algae including non-attached diatoms can live. The mucilaginous community has been termed the metaphyton (see Behre, 1956 & 1966 for detailed study and Round 1981 for a brief comment).

Table I is taken from Nygaard (1999) and records the relative frequency of epiphytic diatoms on ten samples of a mixture of *Isoetes* spp. and *Sphagnum* spp. plus an unnamed macro-alga growing in the acidic waters of Grane Langsø at 0.25 and 11.25 m depth. Of the over 50 diatoms recorded, only *Eunotia bilunaris* (16.9%), *Eunotia*
spp. (23.3%) and *Tabellaria flocculosa* (28.2%) are at all abundant at 11.25 m and they are typical members of the epiphytic flora in acidic lakes. At 0.25 m depth *Eunotia* spp. (36.5%), *Frustulia rhomboides* var. *saxonica* (15.17%) and *Tabellaria flocculosa* (17.30%) can be added to this acidic flora. Many interesting problems arise from the perusal of this list. The obvious first comment is that the *Eunotia* and *Tabellaria* are non-motile, both attaching by means of extruded mucilage pads, whereas *Frustulia* is a biraphid motile genus, but here it is almost certainly the form which lives in mucilage tubes, though why it does not build populations at 16.5 m is not clear. This raises my first concern – microscopic observation of collections in the live state is desirable – this would have clarified the microhabitat of *Frustulia* and also the exact status of the *Eunotia* spp. which in the case of *E. bilunaris* is an attached epiphyte (personal studies – text in preparation) but exactly where do the other 40-plus species grow. In my opinion the separation of rare species in a population from the contaminants should be essential basic ecological practice. Are there any rare but truly epiphytic species in Nygaard’s list? I offer the following comments. Of the non-motile species listed,

<table>
<thead>
<tr>
<th>Diatoms</th>
<th>11.25 m depth</th>
<th>0.25 m depth</th>
<th>plankton 0.10 m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Achnanthes minutissima</td>
<td>0.806</td>
<td>5.13</td>
<td>0</td>
</tr>
<tr>
<td>Achnanthes lanceolata</td>
<td>0</td>
<td>0.136</td>
<td>0</td>
</tr>
<tr>
<td>Aulacoseira alpigena</td>
<td>0.242</td>
<td>0.157</td>
<td>0</td>
</tr>
<tr>
<td>Aulacoseira granulata</td>
<td>0</td>
<td>0.03</td>
<td>0</td>
</tr>
<tr>
<td>Aulacoseira islandica</td>
<td>0.242</td>
<td>0.188</td>
<td>0</td>
</tr>
<tr>
<td>Aulacoseira lacustris</td>
<td>2.82</td>
<td>0.628</td>
<td>0</td>
</tr>
<tr>
<td>Aulacoseira laevissima</td>
<td>0.242</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Aulacoseira littorata var. littorata</td>
<td>5.238</td>
<td>0.753</td>
<td>0</td>
</tr>
<tr>
<td>Cocconeis placentula var. euglypta</td>
<td>0.242</td>
<td>0.282</td>
<td>0</td>
</tr>
<tr>
<td>Cocconeis placentula var. linearis</td>
<td>0</td>
<td>0.209</td>
<td>0</td>
</tr>
<tr>
<td>Cymbella amphicephala var. hercynica</td>
<td>0</td>
<td>0.136</td>
<td>0</td>
</tr>
<tr>
<td>Cymbella gracilis</td>
<td>0.242</td>
<td>2.05</td>
<td>0</td>
</tr>
<tr>
<td>Cymbella hillii</td>
<td>0</td>
<td>0.03</td>
<td>0</td>
</tr>
<tr>
<td>Cymbella leptoceras</td>
<td>0</td>
<td>0.03</td>
<td>0</td>
</tr>
<tr>
<td>Cymbella perpusilla var. striatior</td>
<td>0</td>
<td>0.06</td>
<td>0</td>
</tr>
<tr>
<td>Cymbella silesiaca</td>
<td>0.242</td>
<td>1.39</td>
<td>0</td>
</tr>
<tr>
<td>Eunotia arcus</td>
<td>0.242</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Eunotia bilunaris</td>
<td>16.92</td>
<td>2.51</td>
<td>0</td>
</tr>
<tr>
<td>Eunotia incisa</td>
<td>0.242</td>
<td>1.773</td>
<td>0</td>
</tr>
<tr>
<td>Eunotia implicata</td>
<td>3.384</td>
<td>2.51</td>
<td>0</td>
</tr>
<tr>
<td>Eunotia serra var. diadema</td>
<td>0.242</td>
<td>5.23</td>
<td>0</td>
</tr>
<tr>
<td>Eunotia spp.</td>
<td>27.397</td>
<td>36.5</td>
<td>0</td>
</tr>
<tr>
<td>Frustulia ulna var. arcus</td>
<td>0.242</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Frustulia rhomboides var. saxonica</td>
<td>0.242</td>
<td>1.17</td>
<td>0</td>
</tr>
<tr>
<td>Hantzschia amphioxys</td>
<td>0</td>
<td>0.3</td>
<td>0</td>
</tr>
<tr>
<td>Navicula heimansii</td>
<td>0.242</td>
<td>0.188</td>
<td>0</td>
</tr>
<tr>
<td>Navicula heimansioides</td>
<td>0</td>
<td>0.973</td>
<td>0</td>
</tr>
<tr>
<td>Navicula jussufieli</td>
<td>0.242</td>
<td>0.09</td>
<td>0</td>
</tr>
<tr>
<td>Navicula lobelae</td>
<td>0.242</td>
<td>0.04</td>
<td>0</td>
</tr>
<tr>
<td>Navicula pumila</td>
<td>0.967</td>
<td>0.09</td>
<td>0</td>
</tr>
<tr>
<td>Navicula bacula</td>
<td>0</td>
<td>0.03</td>
<td>0</td>
</tr>
<tr>
<td>Neidium affine var. affine</td>
<td>0</td>
<td>0.03</td>
<td>0</td>
</tr>
<tr>
<td>Neidium affine var. longipes</td>
<td>0</td>
<td>0.09</td>
<td>0</td>
</tr>
<tr>
<td>Neidium densestratum</td>
<td>0</td>
<td>0.43</td>
<td>0</td>
</tr>
<tr>
<td>Nitzschia linearis var. tenus</td>
<td>0.242</td>
<td>0.544</td>
<td>0</td>
</tr>
<tr>
<td>Nitzschia microcephala forma</td>
<td>0.242</td>
<td>0.06</td>
<td>0</td>
</tr>
<tr>
<td>Pinnularia braunii</td>
<td>0</td>
<td>0.06</td>
<td>0</td>
</tr>
<tr>
<td>Pinnularia dacrylus</td>
<td>0.242</td>
<td>0.03</td>
<td>0</td>
</tr>
<tr>
<td>Pinnularia divergentissima forma</td>
<td>0.242</td>
<td>0.03</td>
<td>0</td>
</tr>
<tr>
<td>Pinnularia gentilis</td>
<td>0.242</td>
<td>0.28</td>
<td>0</td>
</tr>
<tr>
<td>Pinnularia gibba</td>
<td>0.967</td>
<td>0.533</td>
<td>0</td>
</tr>
<tr>
<td>Pinnularia major</td>
<td>0.967</td>
<td>0.03</td>
<td>0</td>
</tr>
<tr>
<td>Pinnularia mesolepta var. gibberula</td>
<td>0</td>
<td>0.03</td>
<td>0</td>
</tr>
<tr>
<td>Pinnularia microstauros morphotype 1</td>
<td>0.242</td>
<td>0.240</td>
<td>0</td>
</tr>
<tr>
<td>Pinnularia microstauros morphotype 2</td>
<td>0.242</td>
<td>0.345</td>
<td>0</td>
</tr>
<tr>
<td>Pinnularia subcapitata</td>
<td>2.42</td>
<td>0.74</td>
<td>0</td>
</tr>
<tr>
<td>Pinnularia subgibba</td>
<td>0</td>
<td>0.06</td>
<td>0</td>
</tr>
<tr>
<td>Pinnularia sudetic</td>
<td>0.242</td>
<td>0.157</td>
<td>0</td>
</tr>
<tr>
<td>Pinnularia viridis</td>
<td>0.242</td>
<td>0.21</td>
<td>0</td>
</tr>
<tr>
<td>Stauronema anceps var. hyaline</td>
<td>2.76</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Stauronema phoenicentor</td>
<td>0.242</td>
<td>0.9</td>
<td>0</td>
</tr>
<tr>
<td>Surirella biseta var. constrictum</td>
<td>0.242</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Surirella linearis</td>
<td>0.242</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>Tabellaria flocculosa</td>
<td>28.2</td>
<td>17.36</td>
<td>0</td>
</tr>
<tr>
<td>Tabellaria flocculosa var. sterionelloides</td>
<td>0</td>
<td>0.08</td>
<td>0</td>
</tr>
</tbody>
</table>
Achnanthes minutissima in some form may be epiphytic but the exact site may be on other microscopic algae, and the acid waters do not favour the small forms of this taxon which is a completely chaotic mix, probably of individual species still requiring proper study – it’s inclusion in a list of indicator organisms is almost certainly useless. Achnanthes lanceolata is not a species expected in acid waters and may be a mistaken identification.

The Aulacoseira species are characteristic of acid waters but are not epiphytic – they almost certainly occur as filaments of cells floating on the surface of the sediments and should not be in a list of epiphytes, at least not until someone observes populations strictly associated with host plants. Cocconeis placenta is rare here due to the chemical nature of the water – though it is common as an epiphyte in alkaline situations, the same comments apply as to A. minutissima – many placenta variants require extensive study – records have little value until the taxonomy is sorted out. Cymbella species are often components of epiphytic sites but only C. gracilis on this list is. Dare I say it, but Cymbella species are some of the most difficult to identify with confidence and since Nygaard’s time have been split into at least six genera – often very difficult to distinguish. Fragilaria (not Fragilaria) ulna is another problem in taxonomy and Nygaard was almost certainly not aware of this. Not only was it in Synedra for at least 150 years (and in my view should still be there), now it is proposed that the name be changed again to Ulnaria (Kütz.) Compère (2001) in complete disregard of the advice in the International Code of Nomenclature to preserve, where possible, commonly applied names (see the Code). Of the remaining taxa in Nygaard’s list – from Hantzschia down to Surirella – all are biraphid, motile forms associated with sediments and thus contaminants. One species merits further comment and this is Hantzschia amphioxys, only recorded at 0.25 m depth and not surprising since it is probably the commonest of all soil diatoms – a most remarkable feature of its distribution is why it is not (or perhaps rarely) washed into permanently submerged sites. In over 50 years observation I have never recorded more than an occasional valve in lakes or rivers but in almost every wet place on soils it can be found. Finally, only two genera (Eunotia and Tabellaria) are common in the acidic epiphyton of Grane Langsø.

The site at 0.25 m depth has the larger flora representing a greater contribution of species from stones and more varied sediments, etc. whilst at 11.25 m probably only a uniform fine organic sediment is common. In addition, light limitation may operate at the lower depth.

Comparing the overall Nygaard data with other recent studies, e.g. Eloranta (1988) who combined epiphyton and epilithon (using the unfortunate term periphyton) recorded a small pool of species, viz. Anomoeoneis (Brachysira) brachysira (Bréb.) Gruhn., Eunotia lunaris (Ehrenb.) Bréb., E. tenella (Grun.) Hust., E. veneris (Kütz.) O. Müll., Frustulia rhomboides v. sonaxica (Rabenh.) De Toni, Navicula cari Ehrenb., Tabellaria flocculosa (Roth) Kütz. and T. quadrisepata Knudson which are all components of the pool of species common to acid lakes. A later study from a more widespread sampling of lakes ranging from Lappland south to the Tatra mountains (Eloranta & Kwandrans 2002) also revealed a low species richness (21–25 species) with acidophilic and acidobiontic elements. Cluster analysis enabled these workers to refine the distribution into five clusters of species which were scattered over the regions though neither pH values, conductivity nor total phosphate levels were sufficiently correlated with the clusters to give useful ecological characterisation.

My own observations on diatom epiphytes from U.K. acid waters confirms the dominance of Tabellaria flocculosa (Roth) Kütz., Eunotia species, particularly E. incisa Greg., Peronia fibula (Bréb. ex Kütz.) Ross, Cymbella aequalis W. Sm., C. gracilis (Ehrenb.) Kütz., but Frustulia rhomboides (Ehrenb.) De Toni and F. rhomboides v. sonaxica Rabenh. are abundant, though never dominant, and part of an unattached flora, A regular occurrence of two biraphid spp., Navicula heimansii Van Dam & Kooyman and Brachysira brehisonii R. Ross in Hartley suggest a small, probably motile, element in the flora.

As implied by Eloranta & Kwandrans there is simply a pool of acid-loving species in lakes of pH below (6.0) 5.5 but their presence or absence in any one lake is determined by microhabitat factors such as host specificity (sand grain/higher plant host – this latter requires correlating at the species level), sediment type (epipelon), stone type (epilithon) compounded by as yet unknown chemical features. If we are to use terminology such as acidophilic/acidobiontic then these must be defined by pH ranges or some other character of the environment – the controlling mechanisms lie in the dual environment of physical position and chemical status of the water – the “milieu”.

A brief consideration of the chemical “milieu” is warranted.

There is much data in the literature on pH ranges of individual diatom species but space restricts a widespread analysis. I have therefore selected one detailed study of 178 sites based on the flora retrieved from each lake by sampling the surface (most recent) sediment from the deepest point (Stevenson et al. 1991). This method of sampling collects all the diatom species, only some of which are epiphytic. I have extracted two sets of species, those (non-planktonic) occurring in more than 100 sites and therefore forming a widespread (Scandinavia/ U.K.) pool of common acid-loving spe-
cies. They are together with their pH, Achnanthes (Psammothidium) marginulata Grun. in Cleve & Grun. (5.2), A. (Achnanthidium) minutissima Kütz. (6.3), Brachysira brebissonii R. Ross in Hartley (5.3), B. vitrae (Grun.) Ross in Hartley (5.9), Cymbella hebredica (Grun. ex Cleve) Grun. (5.1), C. lunata (W. Sm. in Grev.) (5.1), C. perpusilla A. Cl. (5.2), Eunotia exigua (Bréb. ex Kütz.) Rabenh. (5.1), E. naegeli (5.0), E. pectinalis v. minor (Kütz.) Rabenh. (5.4), E. tenella Grun. in V. Heurck (5.2), Fragilaria virens Ralfs (5.7), Frustulia rhomboides (Rabenh.) De Toni (5.2), F. rhomboides v. saxonica (Rabenh.) De Toni (5.1), Navicula leptostriatia Jørgensen (5.1), N. madumensis Jørgensen (5.4), Peronia fibula (Bréb. ex Kütz.) Ross (5.3), and Tabellaria flocculosa (Roth) Kütz. (5.4). Of these the most widespread is T. flocculosa in 171 sites and we could term these T. flocculosa lakes or alternatively lakes with pH between 5.0–6.0, that is an acidophilic group. But Achnanthidium minutissima falls outside this group in terms of pH. As mentioned above this is not yet a useful indicator species owing to the chaos in the taxonomy. Further analysis of this excellent compilation of data could profitably extract the less common species which must have additional constraints outside that of pH. Can a truly acidobiontic cluster be determined from the Stevenson et al. data? There is a problem in that, within the whole set (178 sites) a much smaller number of sites can be classed as acidobiontic (the species only occur in 4 to 88 lakes) compared with a 100+ in the set (178 sites) a much smaller number of sites can be classed as acidobiontic (the species only occur in less than 50 of the 178 sites exception they occur in less than 50 of the 178 sites range is restricted (4.7–5.0) and that with one exception they occur in less than 50 of the 178 sites and that not one of an extreme acid tolerant group of species (i.e. below pH 4.5 and mainly below pH 3.0) occur. This latter group is only common in
Behre K 1956. Zur Algensozialogie des Süßwasser
Donk. is referred to as a problematic taxon but the
illustrations in numerous publications using world-
wide samples reveals an entity exactly as in the
Figs 27–31 in Schoeman & Archibald (1966) and
many later illustrations – a stable entity from di-
verse regions of the world – there are, however,
some other closely related forms which can
confuse this concept but they are not as thoroughly
studied. Most recently I have been impressed by
papers on Cyclotella ocellata Pantocsek (Edlund et
al., 2003) and Stephanodiscus suzukii Tuji &
Kociolek (emend. Kato, Tanimura, Fukusawa &
Yasuda) (Kato et al. 2003). The Cyclotella work,
whilst discussing cell size range/auxospore size
range in great detail, nevertheless reveals a general
stability of form in the species. The Stephanodiscus
work follows the course of Stephanodiscus species
with an assessment of the light microscopic mor-
phological variation over a considerable period of
time represented in a 385 cm core. Again, the slight
morphological variation did not appear sufficient
to disturb the concept of this equally stable species.
If the stability of form of these two is common to
the majority of diatoms, and all my experience sug-
gests that this is so, then the total number of spe-
cies is extremely high with many taxa not yet ade-
quately described.

In conclusion, one should be wary of long lists
of species from “single” or “double” microhabitats
(e.g. the Isoetes/Sphagnum used by Nygaard) –
some taxa may be dominant only on the Isoetes
or vice versa. Observation of live samples should al-
ways precede preparation of cleaned material. Care
has to be taken when recording pH values but sites
with values below 5.0 do seem to contrast mark-
edly in floristics from those at 5.0–6.0. Stability of
diatom frustule morphology is greater than would
be deduced from data in florases where mixing of
material from often unknown habitats and widely
spaced geographical locations gives a confusing
picture – especially for applied workers without the
means to pursue intricate taxonomy.

REFERENCES

Behre K 1956. Die Algenbesiedlung einiger Seen um
Bremen und Bremerhaven. Veröff Inst Meeres-forsh
Bremerhaven 4: 221–383.

Behre K 1966. Zur Algensozialogie des Süßwasser
(Unter besonderer Berücksichtigung der Litoralal-

Bukhtiyarova L, Round FE 1996. Revision of the genus
Achnanthes sensu lato. Psammothidium, a new genus
based on A. marginulatum. Diatom Research 11:
1–30.

Compère P 2001. Ulnaria (Kützing) Compère, a new ge-

nus name for Fragilaria subgen. Alterasynedra
Lange-Bertalot with comments on the typification of
Synedra Ehrenberg. In Studies on diatoms. Lange-

Edlund MB, Williams RM, Soninkhiskig N. 2003. The
planktonic diversity of Lake Hofsgol, Mongolia. Phy-

Eloranta P 1988. Periphytic diatoms as indicators of lake

Eloranta P, Kwandrans J 2002. Benthic diatom commu-
nities in small acid lakes. Verh Intern Ver Limnol 27:
1563–1566.

Hustedt F 1927–66. Die Kieselalgen Deutschlands,
Österreichs und der Schweiz. In Dr L Rabenhorst’s
Kryptogamen-Flora von Deutschlands, Österreichs
und der Schweiz, 7. Leipzig Academische Verlagsge-
sellschaft.

Hustedt F 1930. Bacillariophyta (Diatomaceae). In Die
Süsswasser-Flora Mitteleuropas, A Pascher ed, O
Koeltz, Koenigstein, Germany, 10 466 p.

I防御 M, Mayama S 2001. Pinnularia acidijaponica M.
I防御 & H. Kobayasi sp. nov. and P. valdetolerans
Mayama et H. Kobayasi sp. nov. – new diatom taxa
from Japanese extreme environments. In Studies on
Diatoms. Lange-Bertalot Festschrift. ARG Gantner
Verlag, KG: 265–277.

Jordan RW 2001. Taxonomy, morphology and distribu-
tion of two Pinnularia species from acidic rivers in
Yamagata and Miyagi Prefectures, Northeast Japan.
In Studies on Diatoms. Lange-Bertalot Festschrift.
ARG Gantner Verlag, KG: 279–302.

Intraspecific variation during the life cycle of a mo-
dern Stephanodiscus species (Bacillariophyceae) in-
ferred from the fossil record of Lake Suigetsu, Japan.
Phycologia 42: 292–300.

Knudsen BM 1957. Ecology of the epiphytic diatom Ta-
bellaria flocculosa (Roth.) Kütz. in three English la-

Krammer K, Lange-Bertalot H 1986, 1988, 1991a,b. Ba-
cillariophyceae. In Süßwasserflora von Mitteleuropa,
2/1 (876 p), 2/2 (596 p), 2/3 (576 p), 2/4 (437 p). Gust-
av Fischer Verlag, Stuttgart, New York.

Nygaard G 1999. Epiphytic diatoms in oligotrophic Lake

Patrick R, Reimer CW 1966. The Diatoms of the United
States. 1. Acad Nat Sc Philadelphia, Monograph 13,
688 p.

Patrick R, Reimer CW 1975. The Diatoms of the United
States. II, part 1. Acad Nat Sc Philadelphia, Mono-
graph 13, 213 p.

Round FE 1981. The ecology of algae. Cambridge Uni-

Schoeman FR, Archibald REM 1980. The diatom flora
of Southern Africa, 6, C.S.I.R. Special Reports, Wa-
ter, 50: 1–35

Stevenson AC, Juggins S, Burks HJB, Anderson NJ,
Battarbee RW, Barge F, Davis RB, Flower RJ, Ha-
worth EY, Jones VJ, Kingston JC, Kreiser AM, Lane
JM, Munro MAR, Renberg I 1991. The surface wa-
ters acidification project palaeolimnology pro-
grame; modern diatom/lake water chemistry data

Reçu le 30 septembre 2003; received September 30, 2003
Accepté le 5 janvier 2004; accepted January 5, 2004

DIATOM ECOLOGY 161