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ABSTRACT. – The deep sea, an environment of great ecological interest, is diffi-

cult to study because of the thick layer of water that overlies it. As a consequence,

choosing a target taxon well suited for the question to be addressed is particularly

advantageous. I suggest that metazoan meiofauna have attributes that make them

the best choice for some deep-sea questions. To illustrate their properties, I discuss

their suitability for use with a potentially powerful technique for the study of

deep-sea communities and for the testing of a major theory of deep-sea diversity. I

also argue that meiofauna can provide a more complete understanding of deep-sea

biogeography.
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RÉSUMÉ. – L’étude des grands fonds marins, un environnement de haut intérêt

écologique, est difficile en raison de l’importante hauteur d’eau qui la surmonte. En

conséquence, le choix d’un taxon cible bien adapté aux questions posées est parti-

culièrement important. Je propose que les métazoaires de la méiofaune possèdent

les caractères qui en font le meilleur choix pour traiter certaines questions. Pour il-

lustrer leurs propriétés, l’intérêt de leur utilisation à l’aide d’une technique poten-

tiellement performante pour l’étude des communautés profondes et pour tester une

théorie majeure de la diversité en mer profonde est discuté. Je suggère aussi que la

méiofaune peut permettre une meilleure compréhension de la biogéographie dans

les grands fonds.

INTRODUCTION

The deep sea is a vast habitat, occupying 49% of

the Earth’s surface (Hessler 1974). In most of this

area, the seabed consists of sediment, making the

soft-bottom deep sea (hereafter the deep sea) argu-

ably the largest biome on the planet. The deep sea

is interesting for many reasons. For example, con-

ditions there are at the extreme of the range for

several gradients of ecological stress (e.g., pres-

sure, food supply), and the deep sea has unexpect-

edly high species richness (Hessler & Sanders

1967). The deep sea is a difficult environment to

study. Its large size and considerable heterogeneity

(Gage & Tyler 1991) prevent drawing universal

conclusions from the investigation of a small num-

ber of sites. At least 200 m of water overlies it

(Murray 1895), so the environment is remote and

cannot be studied with the techniques used in shal-

lower habitats. The tools needed for its study (e.g.,

large ships) are expensive, limiting the number of

investigations. Quantitative sampling (Gage 1975,

Fleeger et al. 1988, Bett et al. 1994) and experi-

mentation are more difficult in the deep sea than in

shallow water (Thistle 2003). As a consequence,

selecting organisms for study that are well suited to

the question at hand is particularly important.

In most deep-sea studies, megafauna (e.g., sea

urchins, sea stars) or macrofauna (e.g., polychaete

worms, bivalve mollusks) (Table I) have been the

focus. I will argue that metazoan meiofauna (hereaf-

ter meiofauna; e.g., nematode worms, harpacticoid

copepods) have attributes that make them better

choices in some circumstances. To illustrate these

features, I will discuss the suitability of meiofauna

as target organisms for use with a potentially power-

ful technique for the study of deep-sea communities

and for testing a major theory of deep-sea diversity.

I will also argue that the study of meiofauna can

provide a more complete understanding of deep-sea

biogeography.

The utility of meiofauna for use

with a technique: caging experiments

In shallow water, caging experiments have been

used with great success to dissect community orga-

nization (Connell 1961, Virnstein 1977). In these

experiments, mesh-covered frames designed to ex-

clude larger animals are placed on the seabed, and
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after a suitable period, the infauna inside is com-

pared to that of controls.

The deep sea contains animals of the same sort

(e.g., sea stars, fishes, crabs) that have been found

to be important in shallow-water soft bottoms.

Caging experiments would allow the roles that

such organisms play in deep-sea communities to be

investigated, but one concern is that individuals of

the target taxa might move in or out of the cage

during the experiment. Because the amount of dis-

tance moved per unit time increases with body size

to a first approximation (Peters 1983), meiofaunal

individuals are likely to move less than larger indi-

viduals. Meiofaunal species also lack the plank-

tonic larval stages common in larger animals (Por

1965, Warwick 1984) and therefore are less likely

to have moved into or out of a cage during the ex-

periment.

Cages impose boundaries that can affect the en-

closed animals, e.g., by interfering with their nor-

mal movement. Experimenters strive to maximize

the surface area enclosed by their cages to reduce

the probability that an individual of a target species

will encounter a boundary. Because of the limita-

tions of the vehicles used to emplace cages in the

deep sea, cages tend to be � 1 m2 (see, e.g.,

Eckman et al. 2001). A way to decrease the effects

of boundaries on motile target organisms is to

study those that, however fast they move in terms

of body lengths per unit time, do not move far in

terms of distance per unit time, those of meiofaunal

size.

Over time, cages foul and are overgrown, in-

creasing the potential for experimental artifacts.

Selecting the metrics that have the shortest re-

sponse times can minimize this problem. Because

meiofauna have higher metabolic rates than larger

organisms (Mahaut et al. 1995), changes in their

condition (e.g., amount of energy reserves) should

occur more quickly than for larger organisms. Be-

cause meiofauna have shorter generation times

than larger organisms (Warwick 1984), their repro-

ductive responses should be more rapid. The low

movement rates, lack of pelagic larvae, high meta-

bolic rates, and rapid reproduction of meiofauna

make them particularly suitable for use in caging

and perhaps other types of deep-sea experiments.

The utility of meiofauna for testing a theory

The question of why the species richness of

many taxa increases with depth (Hessler & Sanders

1967, Sanders 1968), at least into the bathyal zone

(Rex 1973, 1976, Boucher & Lambshead 1995,

Paterson & Lambshead 1995), has been central to

deep-sea ecology since its discovery in the late

1960’s. Among theories proposed to explain the

pattern (Gage & Tyler 1991, Gage 1996), the

grain-matching hypothesis (Jumars 1975a, 1976,

Thistle 1979, Jumars & Gallagher 1982) is promi-

nent. The theory weaves together several threads.

First, the intensity of the motion of the near-bottom

water declines as depth increases, decreasing the

frequency of hydrodynamic sediment disruption.

Second, the amount of food that reaches the seabed

declines as depth increases (Rowe 1971). The de-

crease in food causes a decrease in the standing

stock of animals (Murray 1895) and their activity,

so bioturbation rates should also decline with depth

(see DeMaster et al. 1994). The combination of

reduced hydrodynamic disruption and reduced

bioturbation create a gradient of increasing sedi-

ment stability with increasing depth. Third, most

sediment-dwelling animals modify their local envi-

ronment. For example, some build structures in

which to live, some alter the local microbial com-

munity by feeding, and some produce piles of fecal

pellets. In shallow water, the rate of sediment dis-

ruption is so great that these modifications of the

habitat are quickly obliterated, but as depth in-

creases and the physical environment becomes

more stable, more and more of these modifications
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persist long enough for other animals to perceive

them as habitat heterogeneity. That is, as depth in-

creases, animals themselves produce increasing

amounts of ecologically important “grain” in the

habitat. The increase in grain should allow increas-

ing numbers of species to coexist, for example, by

providing more opportunities for habitat partition-

ing, more refuges from predation, or a more com-

plex template for contemporaneous disequilibrium.

The grain-matching hypothesis brings the threads

together to suggest that the increase in diversity

with increasing depth arises because more and

more animal-created habitat heterogeneity is pres-

ent as depth increases.

The best target species for investigating this hy-

pothesis are those whose space and time scales best

match the space and time scales of the effects of

the animal-created grain. Many structures created

by deep-sea organisms are millimeters to a few

centimeters in largest dimension (Thistle 1979,

Levin et al. 1986), e.g., the test built by the

deep-sea polychaete Tharyx luticastellus (Jumars

1975b) (Fig. 1). Target species with ambits (sensu

Lloyd 1967) on this scale and with generation

times less than the persistence times of the struc-

tures should be able to pass their entire lives in the

heterogeneity the structures create. As ambit sizes

and generation times increase, individuals of po-

tential target species will fit the effects of the struc-

tures less well. For example, a 3-cm-diameter test

cannot be used as a place to live by a 10-cm-long

polychaete as well as it can by a 0.05-cm-long

nematode. Therefore, the suitability of target spe-

cies should decrease with increasing size and gen-

eration time. Meiofauna are the smallest metazoans

and have the shortest generation times (Warwick

1984). They should therefore be particularly suit-

able for testing the grain-matching hypothesis.

Meiofauna and deep-sea biogeography

Biogeographic patterns provide foci for the in-

vestigation of forces that have molded faunas on

regional scales, so the discovery of these patterns

and their study are of interest (MacArthur 1972).

Investigation of such patterns in the deep sea is in

its infancy because of the mismatch between the

large size of the environment and the small amount

of sampling that has been done.

Biogeographic investigations become more dif-

ficult as the samples on which they are based be-

come increasingly biased. At present, most of the

information about the biogeography of macrofauna

comes from samples collected by box corer (see for

example, Hessler & Jumars 1974, Grassle &

Maciolek 1992). This device undercollects animals

living on or near the surface of the sediment

(Jumars 1975a, Bett et al. 1994). In contrast, unbi-

ased samplers for meiofauna have been used since

the 1980’s (e.g., the SMBA multiple corer, Barnett

et al. 1984, and its descendents). Although most of

our knowledge of deep-sea biogeography is based

on larger organisms (see, e.g., Grassle & Maciolek

1992, Allen & Sanders 1996, Glover et al. 2001),

studies of meiofauna should provide a clearer view

of biogeographic patterns until data accumulate

from unbiased macrofaunal sampling.

Biogeographic patterns of meiofauna might not

be the same as those of the larger organisms or

arise for the same reasons. For example, isopods

(Sanders et al. 1965) and harpacticoid copepods

(Vincx et al. 1994) are major crustacean compo-

nents respectively of the macrofauna and the

meiofauna of the deep sea. Most deep-sea isopod

species belong to families that evolved in the deep

sea (Hessler & Thistle 1975). In contrast, most

deep-sea harpacticoid species belong to shal-

low-water genera and families (Por 1965, personal

observation), suggesting a very different evolution-

ary history of the two taxa in the deep sea.

Ecological time-scale processes also affect

biogeographic patterns, and meiofauna and larger

organisms might not respond in the same way. For

example, deep-sea polychaetes are the major ver-

miform component of the deep-sea macrofauna

(Sanders et al. 1965), and nematodes are the major

vermiform component of the deep-sea meiofauna

(Vincx et al. 1994). Because the mouths of nema-

todes are much smaller than those of polychaetes,

nematodes can make selections at a much smaller

scale as to which particles to ingest, scrape, or bite,

so their choices of food could differ from those of

polychaetes. The nematodes should also be able to
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Fig. 1. – The test constructed by the polychaete Tharyx

luticastellus as an example of a biologically produced

structure in the deep sea. The lower third of the test

would be below the sediment surface in nature. Modi-

fied from Jumars (1975b).



use more of the biologically produced environmen-

tal heterogeneity than polychaetes.

Such contrasts suggest that ecological forces

could affect nematodes and polychaetes differ-

ently. Investigation of macrofaunal patterns will

therefore not suffice for a complete understanding

of deep-sea biogeography. For example, Rex et al.

(1993) studied the diversity of the macrofaunal

taxa Bivalvia, Gastropoda, and Isopoda in the deep

North Atlantic and showed that diversity decreased

significantly along a gradient of increasing produc-

tivity. In contrast, Lambshead et al. (2002) found

an increase in nematode diversity along a gradient

of increasing productivity in the equatorial Pacific.

Although the two studies are not exactly compara-

ble, the opposite directions of the trends of diver-

sity with productivity raise the possibility that

meiofauna and macrofauna respond differently to

ecological forces and will therefore have different

biogeographic patterns.

Challenges of using meiofauna

The study of meiofauna has its challenges.

Meiofauna are less well known taxonomically than

larger organisms. That is, deep-sea meiofaunal spe-

cies are probably more numerous than larger spe-

cies (Lambshead 1993), but deep-sea taxonomic

work has been concentrated on the latter (see for

example the reports of the Challenger and Galathea

expeditions). For some questions, this shortcoming

is critical (e.g., species-level biogeography), but for

others, it is unimportant because meiofaunal indi-

viduals from a sample can be readily separated into

working species. Another concern is that the number

of meiofaunal individuals in a sample can be over-

whelming, but methods for truly random subsampling

have been developed (Sherman et al. 1984). Despite

these potential problems, meiofauna have properties

(Table II) that make them good choices for some

investigations in deep-sea biology.
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